Fast Face Detection with Multi-Scale Window Search Free from Image Resizing Using SGI Features

نویسنده

  • Masayuki Miyama
چکیده

Face detection is applied to many tasks such as auto focus control, surveillance, user interface, and face recognition. Processing speed and detection accuracy of the face detection have been improved continuously. This paper describes a novel method of fast face detection with multi-scale window search free from image resizing. We adopt statistics of gradient images (SGI) as image features and append an overlapping cell array to improve detection accuracy. The SGI feature is scale invariant and insensitive to small difference of pixel value. These characteristics enable the multi-scale window search without image resizing. Experimental results show that processing speed of our method is 3.66 times faster than a conventional method, adopting HOG features combined to an SVM classifier, without accuracy degradation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

Improved neural network-based face detection method using color images

The paper describes some face detection algorithms using skin color segmentation, Haar-like features and neural networks. The segmentation using skin color labels promising input image areas that may contain faces. The usage of Haar-like features allows fast rejection of the majority of background. Then, the ensemble of retinally connected neural networks performs the final classification of th...

متن کامل

Determining Effective Features for Face Detection Using a Hybrid Feature Approach

Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...

متن کامل

Fast Bounding Box Estimation based Face Detection

The sliding window approach is the most widely used technique to detect an object from an image. In the past few years, classifiers have been improved in many ways to increase the scanning speed. Apart from the classifier design (such as cascade), the scanning speed also depends on number of different factors (such as grid spacing, and scale at which the image is searched). When the scanning gr...

متن کامل

A Fast Face Detection Method via Convolutional Neural Network

Current face or object detection methods via convolutional neural network (such as OverFeat, R-CNN and DenseNet) explicitly extract multi-scale features based on an image pyramid. However, such a strategy increases the computational burden for face detection. In this paper, we propose a fast face detection method based on discriminative complete features (DCFs) extracted by an elaborately desig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016